
D
O

I: 
1

0
.1

0
3

9
/b

4
1

0
0

7
5

a

T h i s  j o u r n a l  i s  ©  T h e  R o y a l  S o c i e t y  o f  C h e m i s t r y  2 0 0 43 2 8 4 O r g .  B i o m o l .  C h e m . ,  2 0 0 4 ,  2 ,  3 2 8 4 – 3 2 9 3

OBC
w

w
w

.rsc.o
rg

/o
b

c

A R T I C L E

O r g .  B i o m o l .  C h e m . ,  2 0 0 4 ,  2 ,  3 2 8 4 – 3 2 9 3 3 2 8 5

The semantic smart laboratory: a system for supporting the chemical 
eScientist†

Gareth Hughes,*a Hugo Mills,a David De Roure,a Jeremy G. Frey,b Luc Moreau,a 
m. c. schraefel,a Graham Smitha and Ed Zaluskaa
a Electronics and Computer Science, University of Southampton, Southampton,

UK SO17 1BJ. E-mail: gvh@ecs.soton.ac.uk; hrm@ecs.soton.ac.uk; dder@ecs.soton.ac.uk; 
mc@ecs.soton.ac.uk; l.moreau@ecs.soton.ac.uk; gms@ecs.soton.ac.uk; ejz@ecs.soton.ac.uk

b School of Chemistry, University of Southampton, Southampton, UK SO17 1BJ.
E-mail: J.G.Frey@soton.ac.uk

Received 5th July 2004, Accepted 16th September 2004
First published as an Advance Article on the web 18th October 2004

One goal of eScience is to enable the end-to-end publication of experiments and results. In the Combechem project 
we have developed an innovative human-centred system which captures the process of a chemistry experiment from 
plan to execution. The system comprises an electronic lab book replacement, which has been successfully trialled 
in a synthetic organic chemistry laboratory, and a flexible back-end storage system. Working closely with the users, 
we found that a light touch and a high degree of flexibility was required in the user interface. In this paper, we 
concentrate on the representation and storage of human-scale experiment metadata, introducing an ontology to 
describe the record of an experiment, and a storage system for the data from our lab book software. Just as the 
interfaces need to be flexible to cope with whatever a chemist wishes to record, so the back end solutions need 
to be similarly flexible to store any metadata that may be created. The storage system is based on Semantic Web 
technologies, such as RDF, and Web Services. It gives a much higher degree of flexibility to the type of metadata it 
can store, compared to the use of rigid relational databases.

Introduction
The UK’s eScience programme1 has so far concentrated on the 
issues of using Grid computing to support large-scale compute-
intensive science. The relatively small-scale needs of everyday 
laboratory users, such as recording experiments, have largely 
been left out of the eScience picture. While the flexible and 
robust paper-based lab book has been the de facto experimental 
recording tool literally for centuries, it has significant problems 
in the world of digital science. When scientists wish to share data 
or move towards electronic publication of complete and detailed 
results, as in the Publish@Source vision,2 the paper lab book 
becomes an obstacle: data captured in the lab book are invisible 
to those who cannot access it physically. Our goal, in concert 
with the wider eScience program, has been to develop a digital 
lab book system with three core components: (1) a lab book-like 
experimental capture system, (2) a middleware architecture to 
support storing and sharing those data, and (3) an application 
both to plan the experiment in accordance with safety require-
ments and to represent the results.

The paper lab book is flexible, portable and robust. It can be 
easily transported; it readily captures both writing and drawing; 
it is highly resistant to damage. As a legal document, it is used to 
situate and date intellectual property claims. As a communica-
tions tool, it is used to discuss work in progress and reflect on 
best practice. One of the key challenges of this project, therefore, 
has been to design a system that can compete with paper with 
the least perceived cost and the least change in practice to the 
scientist. As such, our goal has been to develop a useful, digital 
system that captures the best attributes of paper while adding 
the benefit of digital capture. In order to ensure that our system 
would meet these requirements and be useful to real chemists 
carrying out real chemistry, our design approach throughout has 
been chemist-centered, from interface to architecture.

In this paper we review our human-centered design approach 
to develop the lab book application. We then describe the 
ontology we have developed for human-scale experimental 
metadata. We also present the associated flexible storage tech-
nology we developed to support the lab book applications. We 
discuss the advantages we have found in particular in using 
RDF for experiment metadata storage over more traditional 
technologies such as relational database tables. In addition we 
show an experiment planning application and how we have 
integrated our existing digital lab book deployment with this 
new technology.

A review of other relevant work is included towards the end 
of this paper. This is to allow us to introduce the technologies 
and concepts we use in our work which this readership might 
not be familiar with, and to place the review in the context of 
those technologies.

Understanding the process of recording an experiment
In human computer interaction (HCI), a common approach for 
designing new software systems is called “user-centered design.” 
In this approach, designers have a variety of techniques avail-
able that they can use to engage with the potential users of the 
system in order to understand those users’ requirements for the 
new system. These requirements are then translated into a set of 
prototypes that are again tested with the user community. Once 
the prototype design is settled, the functional requirements for 
the working system can be derived. From this map, the actual 
system can be developed.

In the case of developing a digital experimental capture 
system, we quickly learned that extant HCI methods were 
not appropriate. Most of these methods assume that there is 
either common knowledge between the designer and the expert 
about the artefacts being used, or where there is not, that the 
process being systematised can be readily explained (see ref. 3 
for a review of these approaches). There is also an assumption 
that the complete process being systematised can be observed 
in its entirety. These assumptions did not hold true in the lab: 
chemistry experiments, we learned, are highly expert, loosely 

† This is one of a number of contributions on the theme of molecular 
informatics, published to coincide with the RSC Symposium “New 
Horizons in Molecular Informatics”, December 7th 2004, Cambridge 
UK.
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application for use at a desk and a Tablet PC based experiment 
capture suite of applications for use in the laboratory. The 
planning application will expand in time to form a viewer of 
the experiment results.

We have thus developed three primary applications: a 
planning tool, which is used to set up the plan and ingredients 
for the experiment; a weigh-station/liquid-measure applica-
tion, used for recording the quantities of  ingredients actually 
used, as an example of a measurement device; and a “bench” 
application, used for making notes and annotations on the plan 
while performing the experiment. The latter two applications 
we have implemented on a Tablet PC, to be carried around in 
the laboratory. The current prototype planner application is 
implemented as a set of  dynamic, form-based web pages. The 
“smart lab” system is modular. For instance, other measurement 
devices, such as a digital camera for recording TLC plates, or 
a formatter for adding mass spectrograph recordings, can also 
be added to the system in the same way as the weigh-station 
application. We describe the planning application first, followed 
by the Tablet applications. These were developed first since 
they replace the lab book, and are the most critical components 
of the system.

The planner
As noted, chemists have to fill in a COSHH form for safety 
requirements (see Fig. 1). We have leveraged this necessity into 
a virtue for our planning approach: we modify the COSHH 
form to include extended descriptions of  the steps for the 
experiment process listed on the form. We emulate elements 
of  the COSHH form itself  in the Web form we provide for 
chemists to develop their plan. This extended plan represents 
a change in the degree of  detail chemists currently need to 
provide in order to seek approval for their experiement. In our 
interviews with chemists who tested this approach, it was clear 
that the perceived benefit of  this extra effort was worth the 
perceived cost. Reasons ranged from preplanning meaning that 
less energy is spent during the experiment remembering what 
to do next, to having persistently legible results available.

structured, and potentially of long duration. The bottom line 
was that without being chemists ourselves, we could not effec-
tively model the attributes of the task that we were trying to 
capture in the new system.

We needed to bridge the gap between the world of chemists 
and the world of computer scientists. To do so we developed a 
new design elicitation approach, which we called “making tea” 
or “design by analogy.” In this case, we made tea as an analogue 
for a chemistry experiment. Making tea as an experiment let us 
focus on the process of the experiment and what gets recorded 
in an experiment without getting bogged down at the start 
with the particulars of an actual experiment. With tea, both 
designers and chemists could understand and use the analogy to 
communicate about the details of what happens in the lab. Tea 
could be used to describe both how chemistry experiments are 
like making tea, and, equally critically, where making tea is not 
like an actual experiment.

By making tea as an experiment we were able to investigate the 
chemist’s recording process both physically and in the abstract. 
Physically, we could look at what activities take place where in 
the laboratory that require recording, from measuring chemicals 
to mixing compounds; in the abstract, we could see specifically 
what is recorded about an event, and how it is recorded 
during an experiment (drawing, notes, references). Perhaps 
most effectively, making tea let us interrogate why one thing was 
recorded rather than others. For instance, with tea we could ask, 
“Why record the amount of milk, but not which was added to 
the cup first, the milk or the tea?” Another advantage of tea is 
that the tea experiment could be carried out in a short period 
of time, letting us observe a complete experiment from start to 
finish. Indeed, we ran the experiment multiple times, and with 
a variety of chemists, moving from common kitchen utensils in 
one iteration, to full chemistry kit in another. Perhaps ironically, 
the result of  these repeated tea sessions was, rather than the 
expected increase in functional requirements, we progressively 
reduced the complexity of the designs we prototyped.

The result of  developing a method to help designers 
interrogate these highly expert, loosely structured, potentially 
long-duration tasks has been, so far, the development of a well-
received prototype of a usable digital lab book system.4 Based 
on the lessons learned from that work we have been developing 
the ontologies, architecture and experiment planning applica-
tion required to support the chemist in the lab. In the following 
sections of the paper, we discuss each of these components in 
further detail. In order to contextualize the rationale for our 
ontology and architecture designs, we first review the interfaces 
for the lab book application: the user requirements for the 
human interaction have very much informed the design require-
ments for these other system components.

The experiment cycle and the application interface
The experiment cycle starts with some form of planning. In 
the UK the chemist has to produce a plan of the experiment 
as a list of the reagents to be used, and any associated hazards, 
as part of  the COSHH (control of  substances hazardous to 
health)5 assessment. Often the experiment planned is a varia-
tion on a previous procedure with a variation in reagents. The 
plan will be authorized by a supervisor once the amounts of 
reagents have been calculated and the relevant safety informa-
tion researched and noted for COSHH. At this point, work 
generally moves into the laboratory. As previously described4 
the laboratory is a cramped and hostile place for delicate equip-
ment such as computers, requiring careful thought in the design 
of electronic lab book replacements. The experiment is carried 
out in the laboratory and in other locations, generally those 
providing specialist services such as the mass spectroscopy 
laboratory. The chemists will then analyse and write up their 
experiments back at their desks.

Our method of supporting the experimenter throughout 
the experiment cycle is to provide an experiment planning 

Fig. 1 The prototype experiment planner. At the top is the experi-
ment metadata. In the middle, the list of ingredients for the experiment. 
At the bottom, the descriptions of  the steps to be performed.
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This web-based planner, therefore, allows the basic structure 
of an experiment to be generated from scratch or from copying 
an existing experiment and refining it. The main metadata for 
the experiment, such as the experimenter’s name and a high-
level description of the experiment, can be entered or updated, 
and more detailed data about the experiment, such as the lists 
of ingredients and steps can be created or modified.

The current Planner interface does not allow the creation of 
a non-linear experiment plan (i.e. where more than one step can 
be done in parallel), but this is not a serious problem for our test 
environment of a synthetic organic research laboratory, where 
the individual experiments rarely have parallel execution paths.

In-lab experiment capture
From planning, the chemist generally moves into the lab, with 
lab book, to carry out and record the experiment. The lab book 
takes up real space in the lab and is used to record observations 
about physically occurring chemical interactions. Likewise 
our experiment capture system, deployed on a Tablet PC, has 
both a similar footprint to a regular lab book, and a similar 
portability. This is not the only physical design that could be 
used. Rather than one device to be carried around the lab, a set 
of  contextually specific devices could be deployed: a screen at 
the weigh scales, at the TLC plate viewer, at the fume cupboard. 
The Tablet prototype let us focus our evaluation on the usability 
of the software interaction. In future work, we will be looking 
further at the hardware deployment. That said, in terms of the 
system’s support for the abstractions of recording observations, 
the system integrates a set of  modularized services which 
could easily be distributed to specific locations. These services 
currently integrated into the single Tablet are a dry measures 
recorder, a wet measures recorder and what we call “the bench” 
for recording observations at each step of the process.

Each component of the recording system is pre-populated 
with data from the experiment plan. The dry and wet measure 
components list the names of the chemicals to be measured and 
their planned quantities, requiring the chemist only to enter their 
actual values. To facilitate rapid data entry, a numeric keypad is 
provided on the screen for quick tapping in of the appropriate 
values (Fig. 2). Likewise, the Bench component shows the list 
of steps produced with the planner. Each step can be annotated 
easily: clicking on a step opens an area for hand-written notes 
or sketches (Fig. 3). Again, working with chemists made it clear 
that hand-written input needed to be supported, hence our 
annotations on the plan support pen-based gestures.

All of  the entries from each component are immediately 
written to the server so that the data are backed up on entry. 
This writing to the server feature was the one most commented 
on by chemists in our user trials: the key value added of the 
system for them was the sense that their data were safe: if  
something happened to the device in the lab, the data would still 
be protected.

In our initial field tests, we used a simple recording process 
to capture the data since our main emphasis was on testing the 
interaction. With the success of that evaluation, our next phase 
has been to develop a more robust and sophisticated architec-
ture to store the record of the experiment, its annotations, and 
appropriate associated data to support review of those data. 
We describe these components in the following sections.

Experiment data produced by the interface applications are 
stored in a persistent Jena6 RDF store using an ontology we 
have developed. Many of the concepts used by the system may 
be new to this audience so before we describe the system we have 
included a tutorial section.

A brief introduction to the world of semantics
In the record of an experiment, there are three important parts: 
the data gathered during the experiment, what those data 
mean, and the relationships between those pieces of data. The 

Fig. 2 The weigh-station Tablet application, showing the list of  re-
agents, with planned and actual amounts.

Fig. 3 The Bench Tablet application. The top half  of  the display 
shows the planned steps to be performed. The lower half  shows hand-
written annotations for the selected step.

traditional lab book stores only the first two parts explicitly, 
and the third part generally only by context (e.g. if  it is on the 
same page, it is part of  the same experiment). When storing 
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the record of an experiment on a computer, it is vital to ensure 
that all three parts are stored, and done so explicitly, so that the 
maximum amount of information can be extracted from it. We 
use languages called RDF and RDFS to give a structure to the 
data which we store.

RDF (Resource Description Framework)7 is a form of data 
storage which deals with the relationships between individual 
objects. Every piece of data in RDF is represented by a URI 
(uniform resource locator: a URL for the web is a specific type 
of URI), which may refer to some actual piece of data or simply 
refer to some non-electronic item or concept. An RDF structure 
consists of  a set of  relationships, called triples. Each triple 
consists of three URIs: the subject and the object, which refer to 
two entities, and the predicate, which is a URI with a commonly 
agreed-on meaning, representing the relationship between the 
subject and the object. So, for example, the triple:

[http://www.ecs.soton.ac.uk/info/person-00389/
http://www.akktors.org/ontology/portal#has-web-address/
http://www.ecs.ssoton.ac.uk/~gvh/]

indicates that the person represented by the “person-00389” 
URI has a particular web address (see Fig. 4). The URIs do 
not necessarily have to display anything useful in a web browser, 
indeed, they do not even have to resolve.

RDFS can also be used to give certain types of relationships 
between types of entity—for example, with subclasses, where 
all things of one type are also things of another type. As an 
example of this, consider the process of filtering with a Buchner 
funnel. Every example of filtering with a Buchner funnel is also 
an example of filtering, and every example of filtering is also an 
example of a process. There are therefore relationships between 
“FiltrationWithBuchnerFunnel”, “Filtration”, and “Process” 
(see Fig. 6). RDFS can be used to represent such hierarchies.

It is possible to represent any relationship between two objects 
simply by adding a new triple into the RDF file or RDF storage 
system. It is possible to add greater structure and meaning to a 
relationship by using a predefined set of definitions or ontology. 
In the example above, the relationship (predicate) is

http://www.aktors.org/ontology/portal#has-web-address/,

which is part of a set of definitions published by the AKT pro-
ject, and which has been given a specific meaning. Ontologies are 
a shared understanding of a concept which allow both humans 
and software to know precisely the relationships between entities 
and thus to be able to compare objects from disparate sources.

With RDF, basic ontologies can be written using RDFS (RDF 
Schema),8 which is used to lay out classes of object for use in 
RDF. For example, in our ontology, we define

 http://www.combechem.org/ontology/process/0.1#Reflux/

as a refluxing process. When we define a URI to represent such 
a process, we can store a relationship in our RDF store, indicat-
ing that the process in question has the type

 http://www.combechem.org/ontology/process/0.1#Reflux/

(see Fig. 5 for an illustration of this).

Fig. 4 An example triple.

Fig. 5 Defining an instance of a class Reflux.

Fig. 6 Example hierarchy of process types.

An alternative language which can be used in place of RDFS 
is OWL (the Web Ontology Language),9 which can describe the 
structures that RDFS describes, and also many other forms of 
relationship (e.g. that two things or concepts are the same; that 
two relationships are the inverse of each other; that certain 
classes of thing are mutually exclusive). OWL is considerably 
more expressive than RDFS, but is also more complex. We have 
started developing our ontology in RDFS, but plan to move to 
OWL in future work.

A body of RDF relationships (sometimes referred to as a 
triple store) does not necessarily have to have an ontology to 
give it the extra structure, but it is useful to have one. Con-
versely, if  it does have an ontology, it does not necessarily have 
to have only one. Different relationships in the store can refer 
to different ontologies. This allows for ontologies to be written 
to deal with specific and limited areas of knowledge, and to be 
placed together to cover larger areas. In practise, we use the 
AKT ontology10 to refer to basic information about people 
(identity, name, contact details, etc.), since the AKT project 
has specialised in representing such information, and use our 
own ontology for representing information about processes and 
experiments, which the AKT ontology knows nothing about.

Why should we choose to use RDF for our data storage 
instead of XML or a traditional relational database? The 
main reason is that XML and relational databases require 
fixed schemas in order to make sense of the data. It is, in the 
terminology of knowledge management, data rather than infor-
mation. RDF captures information rather than data. Due to the 
way that ontologies work, they can be extended piecemeal and 
at will without breaking existing applications. In addition, the 
structure of RDF and suitable ontologies allows the use of soft-
ware which can perform reasoning based on automated logical 
inferences over a body of information to find new connections. 
This is not easy to do (if  it is possible at all) in a relational data-
base structure or in XML, but the fact that RDF is based on 
relationships rather than fixed structures makes it much easier.

Experiment ontology
We have developed an ontology in RDFS to encompass the 
major phases of an experiment: planning the ingredients, plan-
ning the procedural steps, and recording the experiment. The 
ontology uses a high level representation of work flow: Processes 
have inputs and outputs. A process can be an activity performed 
by a person, such as refluxing, or it can be the running of a soft-
ware application. In the former case the output is a substance in 
the reaction chamber, in the latter case it will be a file or a collec-
tion of files, and the RDF will record the URI to those output 
files. These can be stored in other, more appropriate, database 
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systems in a distributed manner. In the case of the experimental 
procedure the URI to the result of a process is a more abstract 
concept of little direct use to the chemist but is a unique refer-
ence to the substance at that particular stage of the experiment.

From observation to ontology

Information recording using the ontology is a representation 
of  the human-scale activities of  scientists performing experi-
ments. The requirements have been gathered from our work 
with chemists in the laboratory. We have also incorporated 
requirements from the chemistry aspects of  the Combechem 
project so that concepts such as a process can mean either an 
act performed by a human or the running of a piece of software. 
The initial design was inspired by analysing the experiments 
performed by chemists during the Tablet interface trials as well 
as some simple procedures such as the preparation of  aspirin. 
We quickly noted that there was a spine of  activity running 
through the record in which a process led to a product which in 
turn formed the input to the next process step. In the laboratory 
this maps to the adding of  ingredients to a reaction vessel and 
the actions performed on it to result finally in an end product.

This process-product pairing is important, both in terms of 
the physical reality of an experiment, and also in software where 
each computational process results in output files. Recording 
these intermediate outputs allows us to link to each outcome 
from the final report and provide far greater opportunities for 
other scientists to reproduce experiments. Previously all that 
remained from an experiment would typically be the analysis of 
the final product. Our ontology is designed to make it easier for 
systems such as Ebank11 to retrieve all of the intermediate data 
and results vital to reproducing a procedure.

Major concepts of the ontology

Our ontology separates out a plan from the record of an 
execution of that plan. There is no reason, from the point of 
view of the ontology, why a plan cannot have more than one 
execution trace, although we do not currently allow for that 
in our software. The separation between plan and record is 
an important one, since the two may not match exactly. An 
experimenter may perform additional steps over and above 
those in the plan, for example if  something unexpected or 
unplanned happens (say, an interim result is a solid, rather 
than a liquid as expected, and must be dissolved to continue). 
The two main components which the ontology models are 
Materials and Processes. A Material may be either a data set, 
or a physical sample of a chemical (possibly some anonymous 
and indeterminate mixture partway through a reaction scheme). 
A Process may be a purely in silico process (a computation); a 
purely in vitro process (a chemical reaction); or a hybrid process 
such as the measurement of a spectrum, which takes a substance 
as input, and produces a piece of data.

The ontology has a hierarchy of different process types; for 
example, it separates in vitro processes into broad classes of 
“Separate”, “Mix” and “React”, with each of these being sub-
divided into different types: Separate has subclasses including 
Filter, LiquidLiquidExtract and ColumnChromatography (see 
Fig. 7). These may be further subdivided to give more detailed 
descriptions of the processes being used, as required. Extending 
the ontology to include additional types of process is a job for 

the domain experts (in this case, chemists), who are much better 
able to identify what classifications are useful. Extending the 
ontology in this way does not require a high degree of expertise 
in ontology creation, as it is primarily a matter of classification 
of processes. There are tools available which can aid the domain 
expert in modifying an ontology.12

To use the ontology’s Materials and Processes, observe that 
every Material may be the input to or the result of  a Process. 
Some Materials will be used as input to several processes (if  they 
are data, or if  they are a large sample of substance split up into 
smaller samples). Some Processes may have many Materials as 
inputs (or as outputs—consider a filtration or fractional distilla-
tion process). Thus, the main part of the experiment consists of 
a network of nodes, always alternating between Materials and 
Processes. A measurement, which may be of some property of 
a substance, or of the state of a process, or even an arbitrary 
annotation made by the experimenter, has three parts to it: a 
measurement process, which is the act of making the measure-
ment, a measurement material, which is the URI representing 
the result, and optionally a type/value pair, representing the data 
of the measurement in the case that it is a simple (one-value) 
observation with a unit, such as a weight or a temperature.

Ontology examples

We have developed a diagram style during this project to aid us 
in visualising the ontology and any example experiment models. 
These diagrams aid us in writing code to navigate along paths 
in the graphs.

The URIs in the sample experiments were created manually 
with descriptive names to aid debugging. In the live system 
the URIs are allocated by a simple Web Service to generate 
unique URIs. Fragments of such diagrams are included here to 
illustrate the experiment model structures. In the diagrams the 
shaded circles depict processes, hollow circles depict substances, 
triangles represent the making of observations and squares 
represent literal values. Each circle, triangle or square is a node 
in the RDF with its shortened URI represented in bold, black 
text. The class name of each node is given in italics and arrows 
represent relationships.

The process-product pairing

There is a spine running through an experiment in the form of a 
series of process-result pairs. Fig. 8 shows the nodes from one of 
the experiments carried out during evaluation of the Tablet PC 
interface software. In the first process step, butanone is added to 
a sample of 4-fluorinated biphenyl resulting in a mixture in the 
reaction vessel. Potassium carbonate is added before the vessel is 
heated. Fig. 8 does not show annotations and observations made 
by the chemist. Examples of these are described below.

Annotations

The experimenter made an annotation using the Tablet 
PC during the reflux, and the graph fragment is shown 
in Fig. 9. From the first_step node there is a 
process_observed_by  property to a MakingAnnotation 
node. This represents the actual act of  making the annotation 
and results in an observation node add_notes which has a 
literal string containing the Tablet’s sketch data (see Fig. 3 for 
an illustration of this type of annotation being entered).

Observations

Some methods of making observations are more complex than 
others. The ontology accounts for this with SimpleObservation 
and ComplexObservation classes. Weighing solids, measuring 
liquids and making annotations are all subclasses of Simple-
Observation. Fig. 10 shows the graph for a simple observation. 
Examples of ComplexObservations include mass spectroscopy 
or the making of a thin layer chromatography plate (TLC). In Fig. 7 The top-level elements of the process section of our ontology.
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these processes there are many more parameters to record about 
the process of making the observation. The ontology does not 
specify the details of  these but our metadata storage system 
will store and retrieve all statements attached to any type of 
Observation so there is no need to specify carefully the details 
in the ontology.

The metadata storage system
Experiment metadata, the connections between the results 
and processes in an experiment, are stored in a persistent Jena 
RDF store6 backed by MySQL. We have written a system 
to manage this storage as a Web Service (using SOAP) with 
an Application Programming Interface (API, the set of 
functions that can be used in a client application) that serves 
and manipulates sub-graphs of an experiment. We call this the 
ModelServer. The API allows clients such as the Planner and 
Tablet to retrieve logical components of an experiment such as 
the textual steps of a plan or the nodes depicting the core record 
of the experiment process.

Querying the ModelServer

The ModelServer API closely matches the ontology and has 
evolved to meet the needs of the front end applications. For 
example the call getExperimentMetaData() will return the top 
level experiment node along with all of its properties such as the 
experiment name, the name of the experimenter and the first 
planned process node and final planned product node. From 
this information a client application can use subsequent API 
calls to navigate the experiment graph.

The method getRecord() requires the ModelServer to walk 
down the graph from the top level Experiment node to the first 
process record node and along the process-product pairs. It 
cannot assume that any of the nodes exist as the record of the 
experiment may be in any state.

The API methods return triples as a complete RDF graph, 
over Web Services. This requires the clients of the Web Service 
to be able to manipulate RDF. In the case of the Tablet it is a 
Java application that utilises Jena to load the RDF returned by 
the Web Service and work with the triples.

Searching with RDQL

Each call to the ModelServer will return a sub-graph of a full 
experiment. A client application can make multiple calls and 
add each answer to a locally cached model until it has all of 
the triples that it needs. For instance, the Tablet must make a 
large number of calls to populate the weigh-station interface, 
as the data come from both the plan and record sections of 
the experiment. The ModelServer also has a performRDQL() 
method in which a client can compose a search query using 
RDQL (a search language designed for finding triples in an 
RDF store) and the ModelServer will return the triples found 
by the statement. This allows clients flexibility to circumvent 
the standard API as required. Some of the API calls of  the 
ModelServer are internally implemented as RDQL statements.

Generating unique URIs

To support the creation of entries in the RDF graph, we have a 
URI generator service. This Web Service creates unique URIs 
in a particular namespace on demand, and is used by many 
components of the system when new resources are created. This 
is not to say that all resources used in the RDF model must be 
generated by the URI generator service, or even that they must 
all come from the same namespace. The URIs used in the sample 
diagrams, for example, have been generated by hand.

Making changes to the model

As the experimenter works, the record of the experiment needs 
to be updated by the client applications. For example, record-
ing a new weight for an ingredient, or adding a new note to an 
annotation. The method for adding or updating triples in the 
store is simple yet powerful: a client application supplies two 
RDF models containing the triples to be removed and the triples 
to be added to the experiment model, and calls a function in the 
API to make the required changes to the triple store.

A simple example is for the Tablet to update a text annotation 
from the bench drawing area. The sketch data is a single long 

Fig. 9 RDF graph of the annotation of a process (first_step), 
showing the annotation process, the annotation URI itself  (triangle), 
and the data of the annotation (squares).

Fig. 10 RDF graph of the observation of a process, in this case the 
weighing 4-fluorinated biphenyl.

Fig. 8 Process-product spine of events in an experiment performed during the Tablet evaluations. It shows the main ingredients being added (far 
left), and the processes performed on that mixture. Note the alternation of processes (grey) with products (white) along the experiment path. In this 
diagram observations and annotations have been removed for clarity.
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string stored in a single literal. The Tablet client must supply 
a model containing the triple of the old sketch and a model 
containing a triple for the new sketch. This may seem like a lot 
of  work for one simple update, but good software engineering 
simplifies the process. The real power of this technique arises 
when the clients manipulate and store whole sub-graphs of 
an experiment. The planner does precisely this, building and 
manipulating whole RDF graphs as the user creates and 
edits the plan of the experiment. When the user presses the 
Save Plan button the planner updates large sub-graphs of the 
experiment model in one transaction. The Tablet PC is also able 
to manipulate whole sub-graphs of the model as required. As the 
user performs the experiment and ticks off  steps from the bench 
the Tablet will create the record structure as well as annotation 
structures for the sketch pad.

It is important to note that the triple store will not recog-
nise that a triple already exists and needs to be replaced. 
For instance if  the node Experiment already has a property 
experiment-description of “making tea” which the user 
wants to change to “making coffee” asserting a new triple

                         
[Experiment,
experiment-description,
"making_coffee"]

                         

will add a new triple. A call to getExperimentMetaData() 
will then return two triples with the property of  
experiment-description. This is the correct behaviour 
for a triple store. Enforcing ontology rules and experiment struc-
ture has to be performed at a higher level by the ModelServer 
and the client applications.

Discussion
The ModelServer is built to walk along the spine of an experi-
ment record or plan but cannot assume that the structures exist 
or have been correctly created by a client. The sub-graphs 
shown in Fig. 8, 9 and 10 are samples from a single diagram 
depicting the whole graph for a three stage experiment. This 
diagram, which can be downloaded from our project web site 
http://www.smarttea.org,  was created to help the deve-
lopers correctly write the software and has been an invaluable 
tool in the development cycle.

Using RDF provides a considerable advantage. If  a new 
application needs to store new data about an experiment then it 
simply needs to add the triples to the store. For instance a new 
piece of metadata could be attached to the top level Experiment 
node. The ModelServer has been written always to return all 
triples for all nodes as it retrieves sub-graphs. Therefore the new 
triple is guaranteed to be returned. Clients that are not written 
to use the new property simply ignore triples they do not expect. 
This contrasts with the disruption caused by the adding of a 
new field to a relational database table.

Chemistry experiments vary considerably as procedures 
change and the Combechem project has had first-hand 
experiences of  the difficulty of  using relational databases to 
store and manage metadata for complex chemical procedures. 
A relational database intended to store data for a physical 
chemistry experiment had serious practical difficulties, due 
to the fact that the experimenters change the type and format 
of  their experiments at regular intervals, and the database 
needs to be constantly maintained, which has proven to be 
impractical.

The design of our ontology does not provide a rigid structure 
for an experiment; it provides an agreed vocabulary to describe 
the concepts involved. An RDF API tool such as Jena does not 
provide constraints on a model even if  an ontology is loaded. 
It is still possible to add any triple into the model whether it 
conforms to the ontology design or not. Therefore our ontology 
design and structure of an experiment is created and maintained 
by the software. There is no underlying rigid structure enforce-
ment as there would be by a relational database.

There are two issues in the design of the client-side code. The 
first is that the client-side code handles RDF, and it is RDF that 
is passed over the network. The second is that, in our design, 
the RDF is stored in a “disconnected” manner. Each object in 
the client-side API is stored as a separate object, containing 
a small RDF model describing that object only. This has the 
advantage of separation of the objects into clearly-delineated 
components, making the use of them in the client-side code 
simpler. The main disadvantage is that the models describing 
these objects must be combined into a larger model in order to 
do inferencing over them.

Inferencing

When storing information using semantic technologies such 
as RDF and OWL, it is possible to use the ground-rules 
laid down in the ontology along with the information being 
stored to determine additional information automatically. 
As a simple example, a process marked as being of type 
“FilterWithBuchnerFunnel” can be automatically inferred 
also to be of types “Filter” and “Process”, because of the 
relationship between the process types (see Fig. 6). This 
process can be automated, and is known as inferencing.

The current triplestore system uses Jena’s relational database 
API to store experiment metadata permanently. Our ontology 
is an RDFS file stored separately. We are in the process of 
experimenting with permutations of using the RDFS file 
to provide inferencing capabilities. We have used it on the 
ModelServer within Jena by merging the ontology with the 
data model into an inference model at run time. As our ontology 
is written in RDFS and we have used the Jena RDFS inferenc-
ing rule set, the inferred relationships mainly consist of  those 
given by the ontology hierarchy.

For a typical experiment the inference model contains 10 times 
as many triples as the original model. The inferencing model 
can only infer relationships by querying the database-backed 
model with a severe performance penalty. The major problem 
is that changes to the raw metadata will cause the inferencing 
system to start again. Such a system is not going to provide scal-
able performance at this present time. Loading the whole model 
into memory would give us the performance we need but is not 
compatible with needing to store data permanently. The client 
software can also make use of the ontology to provide inferencing. 
The Tablet system uses Jena for its RDF manipulation so it could 
also be set up to do inferencing over the sub-graphs it uses. As 
ontologies become more complex, and written in more expressive 
languages (e.g. OWL as opposed to RDFS), it becomes possible 
to infer more information in this way. This is one of the driving 
factors for our planned change from RDFS to OWL.

Workflow

Since there are no general restrictions on the number of 
inputs or outputs to a process, it is possible to create not just 
linear plans and records, but arbitrary networks of processes. 
Such networks, when created with the Combechem ontology, 
represent the logical parallelism of tasks, but are not as flexible 
in specifying the execution semantics of the network as, say, 
BPEL13 or OWL-S.14 As an example, optional branches cannot 
be indicated, nor can resource-limitation constraints (where two 
parallel tasks depend on the same piece of equipment, but not 
on each other). This is not a serious problem, given our goals, 
as we are not developing a scheduling system, or a prescriptive 
workflow language.

Background
Having described our work in detail as well as the concepts 
and technologies behind it, we are now in a position to place 
our work in context. In this section we briefly discuss relevant 
work in the areas of lab book replacements and efforts to create 
ontologies for areas of science such as biology and chemistry.
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Lab book replacements

There have been many systems developed that attempt to 
replicate the features of the lab book in different ways. These 
include both commercial systems and academic research 
projects. They range from the electronic storage and indexing 
of paper-based notes15 to being fully integrated into the 
lab environment,16 and from duplicating the free-form style of 
the lab book through to providing detailed structure for all parts 
of the experimental process. Below, we describe briefly a range 
of existing lab book systems, both commercial and academic.

Commercial systems similar to SCRIP-SAFE and Patent-
Pad15 are largely deployed to strengthen intellectual property 
(IP) claims. They use specialised stationery containing user-
specific metadata, which are scanned into the system after use. 
The pages can then be searched by metadata, but not by their 
content, which is retained as a bitmap only.

a-Book17 provides devices which literally augment paper-
based lab books. These augmentations, such as attaching a lab 
book to a Tablet, or providing a PDA to act as an annotation 
lens over a lab book page, attempt to allow the scientist to 
continue to use the familiar lab book while adding additional 
devices to this book to enable digitization of new input. Draw-
backs to this type of approach are that the system is cumber-
some to use (manipulating a lab book and the “viewer” device 
and a pen at the same time), and that the resulting data are 
still not searchable by content.

The Labscape Lab Assistant16 supports experiment planning 
and data entry. The scientist creates a plan for an experiment 
by arranging icons representing lab processes into a graph of 
the experiment. Throughout the lab are identical stations which 
display this graph. The scientist selects the appropriate part of 
the graph, which provides a dialogue box for data entry. This 
system does not claim to replace the lab book. Indeed, published 
papers show that the lab book is still in use, and that printouts 
of the graphs are taped into books where hand written entries 
are visible.

ELN,18 OpenELN,19 ChemOffice20 and NotebookMaker21 
concentrate for the most part on providing form-based entry 
of experiment information at a PC workstation. This mode of 
operation effectively assumes that either the experimenter has a 
PC with a keyboard at their disposal in the lab, or that they are 
writing notes in a traditional lab book and transcribing to the 
computer after the experiment.

The main criticisms of the existing lab book replacement 
systems are that they either attempt to replicate the form of 
the lab too well or that they are geared to a specific form of a 
laboratory, where almost all experiments use exactly the same 
equipment in the same ways, and only the type and quantity of 
the materials being altered. As examples of the two extremes, 
a-Book17 keeps the paper book and enhances it electronically 
(using a PDA as an overlay) for annotation purposes; at the 
other extreme, the LabScape16 system is used in biology labs, 
and is geared more towards annotating multiple parallel samples 
being processed through a small number of process types, 
allowing the software to be greatly constrained in the types of 
input it needs to be able to record.

In some respects, the approaches of SCRIP-SAFE, PatentPad 
and a-Book are similar to ours, in that we allow free-form data 
entry. Where our approach is more advanced than the others is 
in the placing of the individual annotations within a structure 
representing the processes performed in the laboratory. In our 
system, the addition of high-level structures for the experiment 
record in the back-end storage systems gives useful metadata 
which can be used to find relevant parts of the experimental 
record more easily.

Ontologies for eScience

There are numerous efforts underway to create ontologies 
that represent concepts in science. Biology lends itself  well to 

such work with some highly established projects to standardise 
concepts in areas such as genetics. The umbrella for many 
of these is the Open Biological Ontologies Project22 which 
currently contains over 40 ontologies for various domains. 
This effort includes the Gene Ontology project which is 
creating structured vocabularies of gene product attributes.

The Microarray Gene Expression Data Society23 is concerned 
with describing samples and processes used in microarray 
gene experiments. Their first achievement was a format for 
the minimal annotation of an experiment. From there they 
have created an object model to describe experiments. This is 
accompanied by a toolset to aid developers to convert outputs 
from systems into their formats enabling data exchange. The 
formats are now becoming the de facto way to publish data in 
the field.

Noy and Hafner24 developed an ontology for describing 
the procedural descriptions of  biology experiments. The 
ontology models (in our terminology) processes and materials, 
including complex processes, and assemblies of  materials 
and objects (such as “a pot of  tea”, being a pot and some 
tea). They tested the ontology by attempting to represent 
the information contained in sample paragraphs from 
molecular biology papers, to see if  the ontology could cover 
all of  the necessary concepts described. It was not developed 
based on an experience of  users in laboratories but from 
experimental descriptions. Evaluation was done by domain 
experts examining the ontology and samples of  it in use. This 
“top-down” approach has the advantage of  leading to highly 
expressive and powerful ontologies, but misses the strongly 
user-centric outlook which we have brought to our system 
design. An interesting concept of  the ontology is the notion 
of  object histories. This was a mechanism for coping with 
the change of  the form of  a substance and hence the class of  
objects to which it belonged. For instance, batter becomes cake 
after cooking and the batter no longer exists. Our ontology 
does not explicitly make use of  such an object history but is 
able to express the same process history.

The experiments that we have concerned ourselves with 
happen mainly in the laboratory, but many parts of  experi-
ments are run using computers only. Managing the results 
of  such experiments is of  increasing importance in eScience 
and Grid computing. The Earth System Grid project25 is a 
major collaboration to create an ontology that describes the 
processes and data found in such large scale distributed soft-
ware systems. The major high level concepts include pedigree, 
the line of  ancestry of  data from creation through various 
transformations; scientific_use, how the scientist used the 
data including parameters and configuration; other concepts 
include datasets, services and details of  access to services. In 
many respects, the Earth System Grid work covers the same 
ground as our work, but this is not a disadvantage. One of  
the great advantages of  ontologies written in languages such 
as OWL is that they are designed to extend and to reference 
other ontologies as required. It is our belief  that there is no 
single ontology capable of  expressing all of  the concepts of  
chemistry experiments and therefore it is natural to make use 
of  other work as appropriate.

XML markup

In chemistry, the most visible project relating to processing 
chemistry information on computers is the work creating 
CML.26,27 The Chemical Markup Language is primarily an 
XML specification for describing chemical molecules. It has 
extensions to cover computational chemistry and a number 
of other areas. It has achieved considerable success as a com-
mon format to describe molecular data and so is used as a data 
intermediary between differing software systems and in many 
online publications. Our ontology is designed to use CML when 
appropriate for describing molecules or other chemistry-specific 
data structures.
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CMCS and related systems

The collaboratory for multi-scale chemical science (CMCS)28 
is a very large project building a toolkit of  resources to aid 
in multi-scale combustion research. The portal-based project 
encompasses a vast amount of work in individual systems 
to share resources and results in the community. CMCS is a 
powerful approach to managing diverse data formats produced 
from different analysis systems and tools such as electronic 
notebooks.

One of the major components of the project is SAM 
(Scientific Annotation Middleware).29 SAM is a set of  middle-
ware components and services designed to aid storage of data or 
metadata in its native form and provide tools to map metadata 
from one form to another. Their approach is that rather than 
attempt to define a single standard format for analysis data, 
a middleware layer provides translators to map the metadata 
formats as required. Mappings are written in XML so that 
an arbitrary combination of analysis systems, underlying data 
stores and electronic notebooks can be used together through 
the one portal. Researchers can add new definitions of how 
metadata should be translated for both input into and output 
from the system. The system is based upon a WebDav imple-
mentation adding metadata management and notebook services 
layers. The project was also responsible for ELN and so has 
released newer versions of the ELN lab book client/server 
system that integrates with SAM. Earlier ELN versions used 
CGI but version 5 now uses the SAM system and WebDav.

The CMCS and SAM projects are by far the most advanced 
work in electronic notebooks and the distributed storage of 
diverse experimental data. Where their approach differs from 
the work described here is in our use of an ontology to describe 
the nature of an experiment and that our client/server API is 
designed to build a structured RDF graph of an experiment plan 
and record. In the ELN system the structure is tree-based, with 
users creating virtual pages in which they embed objects such 
as text, drawings, graphs. Our ontology and client/server API 
employ higher level concepts of an experiment such as plan and 
record rather than page and sub-page.

Conclusion
We have designed and developed a novel system for recording 
laboratory notes, using experiences and analysis of  users in a 
synthetic organic laboratory with inputs from users in other 
areas of  chemistry. We have produced innovations in not only 
the design methodology, but also in the lightweight style of  
the user interface, and in the human-scale representation of  
the information being recorded, leading to a system which 
supports the experimental process end-to-end, from planning 
of  the experiment to publication at source of  the process and 
results. User-acceptance testing of  the system in a live wet-
laboratory environment was extremely positive, particularly in 
the light of  the severe adverse reactions of  chemists to existing 
systems.

Current and future work will concentrate on the presenta-
tion of the information for an experiment in an easily-read and 
easily-navigated form for Publish@Source dissemination. Other 
areas which are in need of additional work are to improve the 
planner interface to allow for more complex process plans; the 
development of service wrappers to record in silico processes 
and results in the same way as we currently record in vitro 
processes; and developing or using a suitable ontology to 
describe the inputs and outputs of different process classes.

Future work

This work is part of  the Combechem project and, as such, is 
committed to open source principles. It is planned that the 
technologies described here will be lodged with the OMII 
repository (http://www.omii.ac.uk/). The making tea design 
method and the tablet software from will also be evaluated in 

myTea project (http://mytea.ecs.soton.ac.uk/) which will take 
the lessons we have learned and apply them within the MyGrid 
project framework with bioinformaticians. It is also our 
intention to pursue future collaborations with other research 
groups in this area such as those working on CML and the 
CMCS project.
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