
D
O

I:
1

0
.1

0
3

9
/b

4
1

0
0

7
5

a

T h i s j o u r n a l i s © T h e R o y a l S o c i e t y o f C h e m i s t r y 2 0 0 43 2 8 4 O r g . B i o m o l . C h e m . , 2 0 0 4 , 2 , 3 2 8 4 – 3 2 9 3

OBC
w

w
w

.rsc.o
rg

/o
b

c

A R T I C L E

O r g . B i o m o l . C h e m . , 2 0 0 4 , 2 , 3 2 8 4 – 3 2 9 3 3 2 8 5

The semantic smart laboratory: a system for supporting the chemical
eScientist†

Gareth Hughes,*a Hugo Mills,a David De Roure,a Jeremy G. Frey,b Luc Moreau,a
m. c. schraefel,a Graham Smitha and Ed Zaluskaa
a Electronics and Computer Science, University of Southampton, Southampton,

UK SO17 1BJ. E-mail: gvh@ecs.soton.ac.uk; hrm@ecs.soton.ac.uk; dder@ecs.soton.ac.uk;
mc@ecs.soton.ac.uk; l.moreau@ecs.soton.ac.uk; gms@ecs.soton.ac.uk; ejz@ecs.soton.ac.uk

b School of Chemistry, University of Southampton, Southampton, UK SO17 1BJ.
E-mail: J.G.Frey@soton.ac.uk

Received 5th July 2004, Accepted 16th September 2004
First published as an Advance Article on the web 18th October 2004

One goal of eScience is to enable the end-to-end publication of experiments and results. In the Combechem project
we have developed an innovative human-centred system which captures the process of a chemistry experiment from
plan to execution. The system comprises an electronic lab book replacement, which has been successfully trialled
in a synthetic organic chemistry laboratory, and a flexible back-end storage system. Working closely with the users,
we found that a light touch and a high degree of flexibility was required in the user interface. In this paper, we
concentrate on the representation and storage of human-scale experiment metadata, introducing an ontology to
describe the record of an experiment, and a storage system for the data from our lab book software. Just as the
interfaces need to be flexible to cope with whatever a chemist wishes to record, so the back end solutions need
to be similarly flexible to store any metadata that may be created. The storage system is based on Semantic Web
technologies, such as RDF, and Web Services. It gives a much higher degree of flexibility to the type of metadata it
can store, compared to the use of rigid relational databases.

Introduction
The UK’s eScience programme1 has so far concentrated on the
issues of using Grid computing to support large-scale compute-
intensive science. The relatively small-scale needs of everyday
laboratory users, such as recording experiments, have largely
been left out of the eScience picture. While the flexible and
robust paper-based lab book has been the de facto experimental
recording tool literally for centuries, it has significant problems
in the world of digital science. When scientists wish to share data
or move towards electronic publication of complete and detailed
results, as in the Publish@Source vision,2 the paper lab book
becomes an obstacle: data captured in the lab book are invisible
to those who cannot access it physically. Our goal, in concert
with the wider eScience program, has been to develop a digital
lab book system with three core components: (1) a lab book-like
experimental capture system, (2) a middleware architecture to
support storing and sharing those data, and (3) an application
both to plan the experiment in accordance with safety require-
ments and to represent the results.

The paper lab book is flexible, portable and robust. It can be
easily transported; it readily captures both writing and drawing;
it is highly resistant to damage. As a legal document, it is used to
situate and date intellectual property claims. As a communica-
tions tool, it is used to discuss work in progress and reflect on
best practice. One of the key challenges of this project, therefore,
has been to design a system that can compete with paper with
the least perceived cost and the least change in practice to the
scientist. As such, our goal has been to develop a useful, digital
system that captures the best attributes of paper while adding
the benefit of digital capture. In order to ensure that our system
would meet these requirements and be useful to real chemists
carrying out real chemistry, our design approach throughout has
been chemist-centered, from interface to architecture.

In this paper we review our human-centered design approach
to develop the lab book application. We then describe the
ontology we have developed for human-scale experimental
metadata. We also present the associated flexible storage tech-
nology we developed to support the lab book applications. We
discuss the advantages we have found in particular in using
RDF for experiment metadata storage over more traditional
technologies such as relational database tables. In addition we
show an experiment planning application and how we have
integrated our existing digital lab book deployment with this
new technology.

A review of other relevant work is included towards the end
of this paper. This is to allow us to introduce the technologies
and concepts we use in our work which this readership might
not be familiar with, and to place the review in the context of
those technologies.

Understanding the process of recording an experiment
In human computer interaction (HCI), a common approach for
designing new software systems is called “user-centered design.”
In this approach, designers have a variety of techniques avail-
able that they can use to engage with the potential users of the
system in order to understand those users’ requirements for the
new system. These requirements are then translated into a set of
prototypes that are again tested with the user community. Once
the prototype design is settled, the functional requirements for
the working system can be derived. From this map, the actual
system can be developed.

In the case of developing a digital experimental capture
system, we quickly learned that extant HCI methods were
not appropriate. Most of these methods assume that there is
either common knowledge between the designer and the expert
about the artefacts being used, or where there is not, that the
process being systematised can be readily explained (see ref. 3
for a review of these approaches). There is also an assumption
that the complete process being systematised can be observed
in its entirety. These assumptions did not hold true in the lab:
chemistry experiments, we learned, are highly expert, loosely

† This is one of a number of contributions on the theme of molecular
informatics, published to coincide with the RSC Symposium “New
Horizons in Molecular Informatics”, December 7th 2004, Cambridge
UK.

D
O

I:
1

0
.1

0
3

9
/b

4
1

0
0

7
5

a

T h i s j o u r n a l i s © T h e R o y a l S o c i e t y o f C h e m i s t r y 2 0 0 43 2 8 4 O r g . B i o m o l . C h e m . , 2 0 0 4 , 2 , 3 2 8 4 – 3 2 9 3

OBC
w

w
w

.rsc.o
rg

/o
b

c

A R T I C L E

O r g . B i o m o l . C h e m . , 2 0 0 4 , 2 , 3 2 8 4 – 3 2 9 3 3 2 8 5

application for use at a desk and a Tablet PC based experiment
capture suite of applications for use in the laboratory. The
planning application will expand in time to form a viewer of
the experiment results.

We have thus developed three primary applications: a
planning tool, which is used to set up the plan and ingredients
for the experiment; a weigh-station/liquid-measure applica-
tion, used for recording the quantities of ingredients actually
used, as an example of a measurement device; and a “bench”
application, used for making notes and annotations on the plan
while performing the experiment. The latter two applications
we have implemented on a Tablet PC, to be carried around in
the laboratory. The current prototype planner application is
implemented as a set of dynamic, form-based web pages. The
“smart lab” system is modular. For instance, other measurement
devices, such as a digital camera for recording TLC plates, or
a formatter for adding mass spectrograph recordings, can also
be added to the system in the same way as the weigh-station
application. We describe the planning application first, followed
by the Tablet applications. These were developed first since
they replace the lab book, and are the most critical components
of the system.

The planner
As noted, chemists have to fill in a COSHH form for safety
requirements (see Fig. 1). We have leveraged this necessity into
a virtue for our planning approach: we modify the COSHH
form to include extended descriptions of the steps for the
experiment process listed on the form. We emulate elements
of the COSHH form itself in the Web form we provide for
chemists to develop their plan. This extended plan represents
a change in the degree of detail chemists currently need to
provide in order to seek approval for their experiement. In our
interviews with chemists who tested this approach, it was clear
that the perceived benefit of this extra effort was worth the
perceived cost. Reasons ranged from preplanning meaning that
less energy is spent during the experiment remembering what
to do next, to having persistently legible results available.

structured, and potentially of long duration. The bottom line
was that without being chemists ourselves, we could not effec-
tively model the attributes of the task that we were trying to
capture in the new system.

We needed to bridge the gap between the world of chemists
and the world of computer scientists. To do so we developed a
new design elicitation approach, which we called “making tea”
or “design by analogy.” In this case, we made tea as an analogue
for a chemistry experiment. Making tea as an experiment let us
focus on the process of the experiment and what gets recorded
in an experiment without getting bogged down at the start
with the particulars of an actual experiment. With tea, both
designers and chemists could understand and use the analogy to
communicate about the details of what happens in the lab. Tea
could be used to describe both how chemistry experiments are
like making tea, and, equally critically, where making tea is not
like an actual experiment.

By making tea as an experiment we were able to investigate the
chemist’s recording process both physically and in the abstract.
Physically, we could look at what activities take place where in
the laboratory that require recording, from measuring chemicals
to mixing compounds; in the abstract, we could see specifically
what is recorded about an event, and how it is recorded
during an experiment (drawing, notes, references). Perhaps
most effectively, making tea let us interrogate why one thing was
recorded rather than others. For instance, with tea we could ask,
“Why record the amount of milk, but not which was added to
the cup first, the milk or the tea?” Another advantage of tea is
that the tea experiment could be carried out in a short period
of time, letting us observe a complete experiment from start to
finish. Indeed, we ran the experiment multiple times, and with
a variety of chemists, moving from common kitchen utensils in
one iteration, to full chemistry kit in another. Perhaps ironically,
the result of these repeated tea sessions was, rather than the
expected increase in functional requirements, we progressively
reduced the complexity of the designs we prototyped.

The result of developing a method to help designers
interrogate these highly expert, loosely structured, potentially
long-duration tasks has been, so far, the development of a well-
received prototype of a usable digital lab book system.4 Based
on the lessons learned from that work we have been developing
the ontologies, architecture and experiment planning applica-
tion required to support the chemist in the lab. In the following
sections of the paper, we discuss each of these components in
further detail. In order to contextualize the rationale for our
ontology and architecture designs, we first review the interfaces
for the lab book application: the user requirements for the
human interaction have very much informed the design require-
ments for these other system components.

The experiment cycle and the application interface
The experiment cycle starts with some form of planning. In
the UK the chemist has to produce a plan of the experiment
as a list of the reagents to be used, and any associated hazards,
as part of the COSHH (control of substances hazardous to
health)5 assessment. Often the experiment planned is a varia-
tion on a previous procedure with a variation in reagents. The
plan will be authorized by a supervisor once the amounts of
reagents have been calculated and the relevant safety informa-
tion researched and noted for COSHH. At this point, work
generally moves into the laboratory. As previously described4
the laboratory is a cramped and hostile place for delicate equip-
ment such as computers, requiring careful thought in the design
of electronic lab book replacements. The experiment is carried
out in the laboratory and in other locations, generally those
providing specialist services such as the mass spectroscopy
laboratory. The chemists will then analyse and write up their
experiments back at their desks.

Our method of supporting the experimenter throughout
the experiment cycle is to provide an experiment planning

Fig. 1 The prototype experiment planner. At the top is the experi-
ment metadata. In the middle, the list of ingredients for the experiment.
At the bottom, the descriptions of the steps to be performed.

3 2 8 6 O r g . B i o m o l . C h e m . , 2 0 0 4 , 2 , 3 2 8 4 – 3 2 9 3 O r g . B i o m o l . C h e m . , 2 0 0 4 , 2 , 3 2 8 4 – 3 2 9 3 3 2 8 7

This web-based planner, therefore, allows the basic structure
of an experiment to be generated from scratch or from copying
an existing experiment and refining it. The main metadata for
the experiment, such as the experimenter’s name and a high-
level description of the experiment, can be entered or updated,
and more detailed data about the experiment, such as the lists
of ingredients and steps can be created or modified.

The current Planner interface does not allow the creation of
a non-linear experiment plan (i.e. where more than one step can
be done in parallel), but this is not a serious problem for our test
environment of a synthetic organic research laboratory, where
the individual experiments rarely have parallel execution paths.

In-lab experiment capture
From planning, the chemist generally moves into the lab, with
lab book, to carry out and record the experiment. The lab book
takes up real space in the lab and is used to record observations
about physically occurring chemical interactions. Likewise
our experiment capture system, deployed on a Tablet PC, has
both a similar footprint to a regular lab book, and a similar
portability. This is not the only physical design that could be
used. Rather than one device to be carried around the lab, a set
of contextually specific devices could be deployed: a screen at
the weigh scales, at the TLC plate viewer, at the fume cupboard.
The Tablet prototype let us focus our evaluation on the usability
of the software interaction. In future work, we will be looking
further at the hardware deployment. That said, in terms of the
system’s support for the abstractions of recording observations,
the system integrates a set of modularized services which
could easily be distributed to specific locations. These services
currently integrated into the single Tablet are a dry measures
recorder, a wet measures recorder and what we call “the bench”
for recording observations at each step of the process.

Each component of the recording system is pre-populated
with data from the experiment plan. The dry and wet measure
components list the names of the chemicals to be measured and
their planned quantities, requiring the chemist only to enter their
actual values. To facilitate rapid data entry, a numeric keypad is
provided on the screen for quick tapping in of the appropriate
values (Fig. 2). Likewise, the Bench component shows the list
of steps produced with the planner. Each step can be annotated
easily: clicking on a step opens an area for hand-written notes
or sketches (Fig. 3). Again, working with chemists made it clear
that hand-written input needed to be supported, hence our
annotations on the plan support pen-based gestures.

All of the entries from each component are immediately
written to the server so that the data are backed up on entry.
This writing to the server feature was the one most commented
on by chemists in our user trials: the key value added of the
system for them was the sense that their data were safe: if
something happened to the device in the lab, the data would still
be protected.

In our initial field tests, we used a simple recording process
to capture the data since our main emphasis was on testing the
interaction. With the success of that evaluation, our next phase
has been to develop a more robust and sophisticated architec-
ture to store the record of the experiment, its annotations, and
appropriate associated data to support review of those data.
We describe these components in the following sections.

Experiment data produced by the interface applications are
stored in a persistent Jena6 RDF store using an ontology we
have developed. Many of the concepts used by the system may
be new to this audience so before we describe the system we have
included a tutorial section.

A brief introduction to the world of semantics
In the record of an experiment, there are three important parts:
the data gathered during the experiment, what those data
mean, and the relationships between those pieces of data. The

Fig. 2 The weigh-station Tablet application, showing the list of re-
agents, with planned and actual amounts.

Fig. 3 The Bench Tablet application. The top half of the display
shows the planned steps to be performed. The lower half shows hand-
written annotations for the selected step.

traditional lab book stores only the first two parts explicitly,
and the third part generally only by context (e.g. if it is on the
same page, it is part of the same experiment). When storing

3 2 8 6 O r g . B i o m o l . C h e m . , 2 0 0 4 , 2 , 3 2 8 4 – 3 2 9 3 O r g . B i o m o l . C h e m . , 2 0 0 4 , 2 , 3 2 8 4 – 3 2 9 3 3 2 8 7

the record of an experiment on a computer, it is vital to ensure
that all three parts are stored, and done so explicitly, so that the
maximum amount of information can be extracted from it. We
use languages called RDF and RDFS to give a structure to the
data which we store.

RDF (Resource Description Framework)7 is a form of data
storage which deals with the relationships between individual
objects. Every piece of data in RDF is represented by a URI
(uniform resource locator: a URL for the web is a specific type
of URI), which may refer to some actual piece of data or simply
refer to some non-electronic item or concept. An RDF structure
consists of a set of relationships, called triples. Each triple
consists of three URIs: the subject and the object, which refer to
two entities, and the predicate, which is a URI with a commonly
agreed-on meaning, representing the relationship between the
subject and the object. So, for example, the triple:

[http://www.ecs.soton.ac.uk/info/person-00389/
http://www.akktors.org/ontology/portal#has-web-address/
http://www.ecs.ssoton.ac.uk/~gvh/]

indicates that the person represented by the “person-00389”
URI has a particular web address (see Fig. 4). The URIs do
not necessarily have to display anything useful in a web browser,
indeed, they do not even have to resolve.

RDFS can also be used to give certain types of relationships
between types of entity—for example, with subclasses, where
all things of one type are also things of another type. As an
example of this, consider the process of filtering with a Buchner
funnel. Every example of filtering with a Buchner funnel is also
an example of filtering, and every example of filtering is also an
example of a process. There are therefore relationships between
“FiltrationWithBuchnerFunnel”, “Filtration”, and “Process”
(see Fig. 6). RDFS can be used to represent such hierarchies.

It is possible to represent any relationship between two objects
simply by adding a new triple into the RDF file or RDF storage
system. It is possible to add greater structure and meaning to a
relationship by using a predefined set of definitions or ontology.
In the example above, the relationship (predicate) is

http://www.aktors.org/ontology/portal#has-web-address/,

which is part of a set of definitions published by the AKT pro-
ject, and which has been given a specific meaning. Ontologies are
a shared understanding of a concept which allow both humans
and software to know precisely the relationships between entities
and thus to be able to compare objects from disparate sources.

With RDF, basic ontologies can be written using RDFS (RDF
Schema),8 which is used to lay out classes of object for use in
RDF. For example, in our ontology, we define

 http://www.combechem.org/ontology/process/0.1#Reflux/

as a refluxing process. When we define a URI to represent such
a process, we can store a relationship in our RDF store, indicat-
ing that the process in question has the type

 http://www.combechem.org/ontology/process/0.1#Reflux/

(see Fig. 5 for an illustration of this).

Fig. 4 An example triple.

Fig. 5 Defining an instance of a class Reflux.

Fig. 6 Example hierarchy of process types.

An alternative language which can be used in place of RDFS
is OWL (the Web Ontology Language),9 which can describe the
structures that RDFS describes, and also many other forms of
relationship (e.g. that two things or concepts are the same; that
two relationships are the inverse of each other; that certain
classes of thing are mutually exclusive). OWL is considerably
more expressive than RDFS, but is also more complex. We have
started developing our ontology in RDFS, but plan to move to
OWL in future work.

A body of RDF relationships (sometimes referred to as a
triple store) does not necessarily have to have an ontology to
give it the extra structure, but it is useful to have one. Con-
versely, if it does have an ontology, it does not necessarily have
to have only one. Different relationships in the store can refer
to different ontologies. This allows for ontologies to be written
to deal with specific and limited areas of knowledge, and to be
placed together to cover larger areas. In practise, we use the
AKT ontology10 to refer to basic information about people
(identity, name, contact details, etc.), since the AKT project
has specialised in representing such information, and use our
own ontology for representing information about processes and
experiments, which the AKT ontology knows nothing about.

Why should we choose to use RDF for our data storage
instead of XML or a traditional relational database? The
main reason is that XML and relational databases require
fixed schemas in order to make sense of the data. It is, in the
terminology of knowledge management, data rather than infor-
mation. RDF captures information rather than data. Due to the
way that ontologies work, they can be extended piecemeal and
at will without breaking existing applications. In addition, the
structure of RDF and suitable ontologies allows the use of soft-
ware which can perform reasoning based on automated logical
inferences over a body of information to find new connections.
This is not easy to do (if it is possible at all) in a relational data-
base structure or in XML, but the fact that RDF is based on
relationships rather than fixed structures makes it much easier.

Experiment ontology
We have developed an ontology in RDFS to encompass the
major phases of an experiment: planning the ingredients, plan-
ning the procedural steps, and recording the experiment. The
ontology uses a high level representation of work flow: Processes
have inputs and outputs. A process can be an activity performed
by a person, such as refluxing, or it can be the running of a soft-
ware application. In the former case the output is a substance in
the reaction chamber, in the latter case it will be a file or a collec-
tion of files, and the RDF will record the URI to those output
files. These can be stored in other, more appropriate, database

3 2 8 8 O r g . B i o m o l . C h e m . , 2 0 0 4 , 2 , 3 2 8 4 – 3 2 9 3 O r g . B i o m o l . C h e m . , 2 0 0 4 , 2 , 3 2 8 4 – 3 2 9 3 3 2 8 9

systems in a distributed manner. In the case of the experimental
procedure the URI to the result of a process is a more abstract
concept of little direct use to the chemist but is a unique refer-
ence to the substance at that particular stage of the experiment.

From observation to ontology

Information recording using the ontology is a representation
of the human-scale activities of scientists performing experi-
ments. The requirements have been gathered from our work
with chemists in the laboratory. We have also incorporated
requirements from the chemistry aspects of the Combechem
project so that concepts such as a process can mean either an
act performed by a human or the running of a piece of software.
The initial design was inspired by analysing the experiments
performed by chemists during the Tablet interface trials as well
as some simple procedures such as the preparation of aspirin.
We quickly noted that there was a spine of activity running
through the record in which a process led to a product which in
turn formed the input to the next process step. In the laboratory
this maps to the adding of ingredients to a reaction vessel and
the actions performed on it to result finally in an end product.

This process-product pairing is important, both in terms of
the physical reality of an experiment, and also in software where
each computational process results in output files. Recording
these intermediate outputs allows us to link to each outcome
from the final report and provide far greater opportunities for
other scientists to reproduce experiments. Previously all that
remained from an experiment would typically be the analysis of
the final product. Our ontology is designed to make it easier for
systems such as Ebank11 to retrieve all of the intermediate data
and results vital to reproducing a procedure.

Major concepts of the ontology

Our ontology separates out a plan from the record of an
execution of that plan. There is no reason, from the point of
view of the ontology, why a plan cannot have more than one
execution trace, although we do not currently allow for that
in our software. The separation between plan and record is
an important one, since the two may not match exactly. An
experimenter may perform additional steps over and above
those in the plan, for example if something unexpected or
unplanned happens (say, an interim result is a solid, rather
than a liquid as expected, and must be dissolved to continue).
The two main components which the ontology models are
Materials and Processes. A Material may be either a data set,
or a physical sample of a chemical (possibly some anonymous
and indeterminate mixture partway through a reaction scheme).
A Process may be a purely in silico process (a computation); a
purely in vitro process (a chemical reaction); or a hybrid process
such as the measurement of a spectrum, which takes a substance
as input, and produces a piece of data.

The ontology has a hierarchy of different process types; for
example, it separates in vitro processes into broad classes of
“Separate”, “Mix” and “React”, with each of these being sub-
divided into different types: Separate has subclasses including
Filter, LiquidLiquidExtract and ColumnChromatography (see
Fig. 7). These may be further subdivided to give more detailed
descriptions of the processes being used, as required. Extending
the ontology to include additional types of process is a job for

the domain experts (in this case, chemists), who are much better
able to identify what classifications are useful. Extending the
ontology in this way does not require a high degree of expertise
in ontology creation, as it is primarily a matter of classification
of processes. There are tools available which can aid the domain
expert in modifying an ontology.12

To use the ontology’s Materials and Processes, observe that
every Material may be the input to or the result of a Process.
Some Materials will be used as input to several processes (if they
are data, or if they are a large sample of substance split up into
smaller samples). Some Processes may have many Materials as
inputs (or as outputs—consider a filtration or fractional distilla-
tion process). Thus, the main part of the experiment consists of
a network of nodes, always alternating between Materials and
Processes. A measurement, which may be of some property of
a substance, or of the state of a process, or even an arbitrary
annotation made by the experimenter, has three parts to it: a
measurement process, which is the act of making the measure-
ment, a measurement material, which is the URI representing
the result, and optionally a type/value pair, representing the data
of the measurement in the case that it is a simple (one-value)
observation with a unit, such as a weight or a temperature.

Ontology examples

We have developed a diagram style during this project to aid us
in visualising the ontology and any example experiment models.
These diagrams aid us in writing code to navigate along paths
in the graphs.

The URIs in the sample experiments were created manually
with descriptive names to aid debugging. In the live system
the URIs are allocated by a simple Web Service to generate
unique URIs. Fragments of such diagrams are included here to
illustrate the experiment model structures. In the diagrams the
shaded circles depict processes, hollow circles depict substances,
triangles represent the making of observations and squares
represent literal values. Each circle, triangle or square is a node
in the RDF with its shortened URI represented in bold, black
text. The class name of each node is given in italics and arrows
represent relationships.

The process-product pairing

There is a spine running through an experiment in the form of a
series of process-result pairs. Fig. 8 shows the nodes from one of
the experiments carried out during evaluation of the Tablet PC
interface software. In the first process step, butanone is added to
a sample of 4-fluorinated biphenyl resulting in a mixture in the
reaction vessel. Potassium carbonate is added before the vessel is
heated. Fig. 8 does not show annotations and observations made
by the chemist. Examples of these are described below.

Annotations

The experimenter made an annotation using the Tablet
PC during the reflux, and the graph fragment is shown
in Fig. 9. From the first_step node there is a
process_observed_by property to a MakingAnnotation
node. This represents the actual act of making the annotation
and results in an observation node add_notes which has a
literal string containing the Tablet’s sketch data (see Fig. 3 for
an illustration of this type of annotation being entered).

Observations

Some methods of making observations are more complex than
others. The ontology accounts for this with SimpleObservation
and ComplexObservation classes. Weighing solids, measuring
liquids and making annotations are all subclasses of Simple-
Observation. Fig. 10 shows the graph for a simple observation.
Examples of ComplexObservations include mass spectroscopy
or the making of a thin layer chromatography plate (TLC). In Fig. 7 The top-level elements of the process section of our ontology.

3 2 8 8 O r g . B i o m o l . C h e m . , 2 0 0 4 , 2 , 3 2 8 4 – 3 2 9 3 O r g . B i o m o l . C h e m . , 2 0 0 4 , 2 , 3 2 8 4 – 3 2 9 3 3 2 8 9

these processes there are many more parameters to record about
the process of making the observation. The ontology does not
specify the details of these but our metadata storage system
will store and retrieve all statements attached to any type of
Observation so there is no need to specify carefully the details
in the ontology.

The metadata storage system
Experiment metadata, the connections between the results
and processes in an experiment, are stored in a persistent Jena
RDF store6 backed by MySQL. We have written a system
to manage this storage as a Web Service (using SOAP) with
an Application Programming Interface (API, the set of
functions that can be used in a client application) that serves
and manipulates sub-graphs of an experiment. We call this the
ModelServer. The API allows clients such as the Planner and
Tablet to retrieve logical components of an experiment such as
the textual steps of a plan or the nodes depicting the core record
of the experiment process.

Querying the ModelServer

The ModelServer API closely matches the ontology and has
evolved to meet the needs of the front end applications. For
example the call getExperimentMetaData() will return the top
level experiment node along with all of its properties such as the
experiment name, the name of the experimenter and the first
planned process node and final planned product node. From
this information a client application can use subsequent API
calls to navigate the experiment graph.

The method getRecord() requires the ModelServer to walk
down the graph from the top level Experiment node to the first
process record node and along the process-product pairs. It
cannot assume that any of the nodes exist as the record of the
experiment may be in any state.

The API methods return triples as a complete RDF graph,
over Web Services. This requires the clients of the Web Service
to be able to manipulate RDF. In the case of the Tablet it is a
Java application that utilises Jena to load the RDF returned by
the Web Service and work with the triples.

Searching with RDQL

Each call to the ModelServer will return a sub-graph of a full
experiment. A client application can make multiple calls and
add each answer to a locally cached model until it has all of
the triples that it needs. For instance, the Tablet must make a
large number of calls to populate the weigh-station interface,
as the data come from both the plan and record sections of
the experiment. The ModelServer also has a performRDQL()
method in which a client can compose a search query using
RDQL (a search language designed for finding triples in an
RDF store) and the ModelServer will return the triples found
by the statement. This allows clients flexibility to circumvent
the standard API as required. Some of the API calls of the
ModelServer are internally implemented as RDQL statements.

Generating unique URIs

To support the creation of entries in the RDF graph, we have a
URI generator service. This Web Service creates unique URIs
in a particular namespace on demand, and is used by many
components of the system when new resources are created. This
is not to say that all resources used in the RDF model must be
generated by the URI generator service, or even that they must
all come from the same namespace. The URIs used in the sample
diagrams, for example, have been generated by hand.

Making changes to the model

As the experimenter works, the record of the experiment needs
to be updated by the client applications. For example, record-
ing a new weight for an ingredient, or adding a new note to an
annotation. The method for adding or updating triples in the
store is simple yet powerful: a client application supplies two
RDF models containing the triples to be removed and the triples
to be added to the experiment model, and calls a function in the
API to make the required changes to the triple store.

A simple example is for the Tablet to update a text annotation
from the bench drawing area. The sketch data is a single long

Fig. 9 RDF graph of the annotation of a process (first_step),
showing the annotation process, the annotation URI itself (triangle),
and the data of the annotation (squares).

Fig. 10 RDF graph of the observation of a process, in this case the
weighing 4-fluorinated biphenyl.

Fig. 8 Process-product spine of events in an experiment performed during the Tablet evaluations. It shows the main ingredients being added (far
left), and the processes performed on that mixture. Note the alternation of processes (grey) with products (white) along the experiment path. In this
diagram observations and annotations have been removed for clarity.

3 2 9 0 O r g . B i o m o l . C h e m . , 2 0 0 4 , 2 , 3 2 8 4 – 3 2 9 3 O r g . B i o m o l . C h e m . , 2 0 0 4 , 2 , 3 2 8 4 – 3 2 9 3 3 2 9 1

string stored in a single literal. The Tablet client must supply
a model containing the triple of the old sketch and a model
containing a triple for the new sketch. This may seem like a lot
of work for one simple update, but good software engineering
simplifies the process. The real power of this technique arises
when the clients manipulate and store whole sub-graphs of
an experiment. The planner does precisely this, building and
manipulating whole RDF graphs as the user creates and
edits the plan of the experiment. When the user presses the
Save Plan button the planner updates large sub-graphs of the
experiment model in one transaction. The Tablet PC is also able
to manipulate whole sub-graphs of the model as required. As the
user performs the experiment and ticks off steps from the bench
the Tablet will create the record structure as well as annotation
structures for the sketch pad.

It is important to note that the triple store will not recog-
nise that a triple already exists and needs to be replaced.
For instance if the node Experiment already has a property
experiment-description of “making tea” which the user
wants to change to “making coffee” asserting a new triple

[Experiment,
experiment-description,
"making_coffee"]

will add a new triple. A call to getExperimentMetaData()
will then return two triples with the property of
experiment-description. This is the correct behaviour
for a triple store. Enforcing ontology rules and experiment struc-
ture has to be performed at a higher level by the ModelServer
and the client applications.

Discussion
The ModelServer is built to walk along the spine of an experi-
ment record or plan but cannot assume that the structures exist
or have been correctly created by a client. The sub-graphs
shown in Fig. 8, 9 and 10 are samples from a single diagram
depicting the whole graph for a three stage experiment. This
diagram, which can be downloaded from our project web site
http://www.smarttea.org, was created to help the deve-
lopers correctly write the software and has been an invaluable
tool in the development cycle.

Using RDF provides a considerable advantage. If a new
application needs to store new data about an experiment then it
simply needs to add the triples to the store. For instance a new
piece of metadata could be attached to the top level Experiment
node. The ModelServer has been written always to return all
triples for all nodes as it retrieves sub-graphs. Therefore the new
triple is guaranteed to be returned. Clients that are not written
to use the new property simply ignore triples they do not expect.
This contrasts with the disruption caused by the adding of a
new field to a relational database table.

Chemistry experiments vary considerably as procedures
change and the Combechem project has had first-hand
experiences of the difficulty of using relational databases to
store and manage metadata for complex chemical procedures.
A relational database intended to store data for a physical
chemistry experiment had serious practical difficulties, due
to the fact that the experimenters change the type and format
of their experiments at regular intervals, and the database
needs to be constantly maintained, which has proven to be
impractical.

The design of our ontology does not provide a rigid structure
for an experiment; it provides an agreed vocabulary to describe
the concepts involved. An RDF API tool such as Jena does not
provide constraints on a model even if an ontology is loaded.
It is still possible to add any triple into the model whether it
conforms to the ontology design or not. Therefore our ontology
design and structure of an experiment is created and maintained
by the software. There is no underlying rigid structure enforce-
ment as there would be by a relational database.

There are two issues in the design of the client-side code. The
first is that the client-side code handles RDF, and it is RDF that
is passed over the network. The second is that, in our design,
the RDF is stored in a “disconnected” manner. Each object in
the client-side API is stored as a separate object, containing
a small RDF model describing that object only. This has the
advantage of separation of the objects into clearly-delineated
components, making the use of them in the client-side code
simpler. The main disadvantage is that the models describing
these objects must be combined into a larger model in order to
do inferencing over them.

Inferencing

When storing information using semantic technologies such
as RDF and OWL, it is possible to use the ground-rules
laid down in the ontology along with the information being
stored to determine additional information automatically.
As a simple example, a process marked as being of type
“FilterWithBuchnerFunnel” can be automatically inferred
also to be of types “Filter” and “Process”, because of the
relationship between the process types (see Fig. 6). This
process can be automated, and is known as inferencing.

The current triplestore system uses Jena’s relational database
API to store experiment metadata permanently. Our ontology
is an RDFS file stored separately. We are in the process of
experimenting with permutations of using the RDFS file
to provide inferencing capabilities. We have used it on the
ModelServer within Jena by merging the ontology with the
data model into an inference model at run time. As our ontology
is written in RDFS and we have used the Jena RDFS inferenc-
ing rule set, the inferred relationships mainly consist of those
given by the ontology hierarchy.

For a typical experiment the inference model contains 10 times
as many triples as the original model. The inferencing model
can only infer relationships by querying the database-backed
model with a severe performance penalty. The major problem
is that changes to the raw metadata will cause the inferencing
system to start again. Such a system is not going to provide scal-
able performance at this present time. Loading the whole model
into memory would give us the performance we need but is not
compatible with needing to store data permanently. The client
software can also make use of the ontology to provide inferencing.
The Tablet system uses Jena for its RDF manipulation so it could
also be set up to do inferencing over the sub-graphs it uses. As
ontologies become more complex, and written in more expressive
languages (e.g. OWL as opposed to RDFS), it becomes possible
to infer more information in this way. This is one of the driving
factors for our planned change from RDFS to OWL.

Workflow

Since there are no general restrictions on the number of
inputs or outputs to a process, it is possible to create not just
linear plans and records, but arbitrary networks of processes.
Such networks, when created with the Combechem ontology,
represent the logical parallelism of tasks, but are not as flexible
in specifying the execution semantics of the network as, say,
BPEL13 or OWL-S.14 As an example, optional branches cannot
be indicated, nor can resource-limitation constraints (where two
parallel tasks depend on the same piece of equipment, but not
on each other). This is not a serious problem, given our goals,
as we are not developing a scheduling system, or a prescriptive
workflow language.

Background
Having described our work in detail as well as the concepts
and technologies behind it, we are now in a position to place
our work in context. In this section we briefly discuss relevant
work in the areas of lab book replacements and efforts to create
ontologies for areas of science such as biology and chemistry.

3 2 9 0 O r g . B i o m o l . C h e m . , 2 0 0 4 , 2 , 3 2 8 4 – 3 2 9 3 O r g . B i o m o l . C h e m . , 2 0 0 4 , 2 , 3 2 8 4 – 3 2 9 3 3 2 9 1

Lab book replacements

There have been many systems developed that attempt to
replicate the features of the lab book in different ways. These
include both commercial systems and academic research
projects. They range from the electronic storage and indexing
of paper-based notes15 to being fully integrated into the
lab environment,16 and from duplicating the free-form style of
the lab book through to providing detailed structure for all parts
of the experimental process. Below, we describe briefly a range
of existing lab book systems, both commercial and academic.

Commercial systems similar to SCRIP-SAFE and Patent-
Pad15 are largely deployed to strengthen intellectual property
(IP) claims. They use specialised stationery containing user-
specific metadata, which are scanned into the system after use.
The pages can then be searched by metadata, but not by their
content, which is retained as a bitmap only.

a-Book17 provides devices which literally augment paper-
based lab books. These augmentations, such as attaching a lab
book to a Tablet, or providing a PDA to act as an annotation
lens over a lab book page, attempt to allow the scientist to
continue to use the familiar lab book while adding additional
devices to this book to enable digitization of new input. Draw-
backs to this type of approach are that the system is cumber-
some to use (manipulating a lab book and the “viewer” device
and a pen at the same time), and that the resulting data are
still not searchable by content.

The Labscape Lab Assistant16 supports experiment planning
and data entry. The scientist creates a plan for an experiment
by arranging icons representing lab processes into a graph of
the experiment. Throughout the lab are identical stations which
display this graph. The scientist selects the appropriate part of
the graph, which provides a dialogue box for data entry. This
system does not claim to replace the lab book. Indeed, published
papers show that the lab book is still in use, and that printouts
of the graphs are taped into books where hand written entries
are visible.

ELN,18 OpenELN,19 ChemOffice20 and NotebookMaker21
concentrate for the most part on providing form-based entry
of experiment information at a PC workstation. This mode of
operation effectively assumes that either the experimenter has a
PC with a keyboard at their disposal in the lab, or that they are
writing notes in a traditional lab book and transcribing to the
computer after the experiment.

The main criticisms of the existing lab book replacement
systems are that they either attempt to replicate the form of
the lab too well or that they are geared to a specific form of a
laboratory, where almost all experiments use exactly the same
equipment in the same ways, and only the type and quantity of
the materials being altered. As examples of the two extremes,
a-Book17 keeps the paper book and enhances it electronically
(using a PDA as an overlay) for annotation purposes; at the
other extreme, the LabScape16 system is used in biology labs,
and is geared more towards annotating multiple parallel samples
being processed through a small number of process types,
allowing the software to be greatly constrained in the types of
input it needs to be able to record.

In some respects, the approaches of SCRIP-SAFE, PatentPad
and a-Book are similar to ours, in that we allow free-form data
entry. Where our approach is more advanced than the others is
in the placing of the individual annotations within a structure
representing the processes performed in the laboratory. In our
system, the addition of high-level structures for the experiment
record in the back-end storage systems gives useful metadata
which can be used to find relevant parts of the experimental
record more easily.

Ontologies for eScience

There are numerous efforts underway to create ontologies
that represent concepts in science. Biology lends itself well to

such work with some highly established projects to standardise
concepts in areas such as genetics. The umbrella for many
of these is the Open Biological Ontologies Project22 which
currently contains over 40 ontologies for various domains.
This effort includes the Gene Ontology project which is
creating structured vocabularies of gene product attributes.

The Microarray Gene Expression Data Society23 is concerned
with describing samples and processes used in microarray
gene experiments. Their first achievement was a format for
the minimal annotation of an experiment. From there they
have created an object model to describe experiments. This is
accompanied by a toolset to aid developers to convert outputs
from systems into their formats enabling data exchange. The
formats are now becoming the de facto way to publish data in
the field.

Noy and Hafner24 developed an ontology for describing
the procedural descriptions of biology experiments. The
ontology models (in our terminology) processes and materials,
including complex processes, and assemblies of materials
and objects (such as “a pot of tea”, being a pot and some
tea). They tested the ontology by attempting to represent
the information contained in sample paragraphs from
molecular biology papers, to see if the ontology could cover
all of the necessary concepts described. It was not developed
based on an experience of users in laboratories but from
experimental descriptions. Evaluation was done by domain
experts examining the ontology and samples of it in use. This
“top-down” approach has the advantage of leading to highly
expressive and powerful ontologies, but misses the strongly
user-centric outlook which we have brought to our system
design. An interesting concept of the ontology is the notion
of object histories. This was a mechanism for coping with
the change of the form of a substance and hence the class of
objects to which it belonged. For instance, batter becomes cake
after cooking and the batter no longer exists. Our ontology
does not explicitly make use of such an object history but is
able to express the same process history.

The experiments that we have concerned ourselves with
happen mainly in the laboratory, but many parts of experi-
ments are run using computers only. Managing the results
of such experiments is of increasing importance in eScience
and Grid computing. The Earth System Grid project25 is a
major collaboration to create an ontology that describes the
processes and data found in such large scale distributed soft-
ware systems. The major high level concepts include pedigree,
the line of ancestry of data from creation through various
transformations; scientific_use, how the scientist used the
data including parameters and configuration; other concepts
include datasets, services and details of access to services. In
many respects, the Earth System Grid work covers the same
ground as our work, but this is not a disadvantage. One of
the great advantages of ontologies written in languages such
as OWL is that they are designed to extend and to reference
other ontologies as required. It is our belief that there is no
single ontology capable of expressing all of the concepts of
chemistry experiments and therefore it is natural to make use
of other work as appropriate.

XML markup

In chemistry, the most visible project relating to processing
chemistry information on computers is the work creating
CML.26,27 The Chemical Markup Language is primarily an
XML specification for describing chemical molecules. It has
extensions to cover computational chemistry and a number
of other areas. It has achieved considerable success as a com-
mon format to describe molecular data and so is used as a data
intermediary between differing software systems and in many
online publications. Our ontology is designed to use CML when
appropriate for describing molecules or other chemistry-specific
data structures.

3 2 9 2 O r g . B i o m o l . C h e m . , 2 0 0 4 , 2 , 3 2 8 4 – 3 2 9 3 O r g . B i o m o l . C h e m . , 2 0 0 4 , 2 , 3 2 8 4 – 3 2 9 3 3 2 9 3

CMCS and related systems

The collaboratory for multi-scale chemical science (CMCS)28
is a very large project building a toolkit of resources to aid
in multi-scale combustion research. The portal-based project
encompasses a vast amount of work in individual systems
to share resources and results in the community. CMCS is a
powerful approach to managing diverse data formats produced
from different analysis systems and tools such as electronic
notebooks.

One of the major components of the project is SAM
(Scientific Annotation Middleware).29 SAM is a set of middle-
ware components and services designed to aid storage of data or
metadata in its native form and provide tools to map metadata
from one form to another. Their approach is that rather than
attempt to define a single standard format for analysis data,
a middleware layer provides translators to map the metadata
formats as required. Mappings are written in XML so that
an arbitrary combination of analysis systems, underlying data
stores and electronic notebooks can be used together through
the one portal. Researchers can add new definitions of how
metadata should be translated for both input into and output
from the system. The system is based upon a WebDav imple-
mentation adding metadata management and notebook services
layers. The project was also responsible for ELN and so has
released newer versions of the ELN lab book client/server
system that integrates with SAM. Earlier ELN versions used
CGI but version 5 now uses the SAM system and WebDav.

The CMCS and SAM projects are by far the most advanced
work in electronic notebooks and the distributed storage of
diverse experimental data. Where their approach differs from
the work described here is in our use of an ontology to describe
the nature of an experiment and that our client/server API is
designed to build a structured RDF graph of an experiment plan
and record. In the ELN system the structure is tree-based, with
users creating virtual pages in which they embed objects such
as text, drawings, graphs. Our ontology and client/server API
employ higher level concepts of an experiment such as plan and
record rather than page and sub-page.

Conclusion
We have designed and developed a novel system for recording
laboratory notes, using experiences and analysis of users in a
synthetic organic laboratory with inputs from users in other
areas of chemistry. We have produced innovations in not only
the design methodology, but also in the lightweight style of
the user interface, and in the human-scale representation of
the information being recorded, leading to a system which
supports the experimental process end-to-end, from planning
of the experiment to publication at source of the process and
results. User-acceptance testing of the system in a live wet-
laboratory environment was extremely positive, particularly in
the light of the severe adverse reactions of chemists to existing
systems.

Current and future work will concentrate on the presenta-
tion of the information for an experiment in an easily-read and
easily-navigated form for Publish@Source dissemination. Other
areas which are in need of additional work are to improve the
planner interface to allow for more complex process plans; the
development of service wrappers to record in silico processes
and results in the same way as we currently record in vitro
processes; and developing or using a suitable ontology to
describe the inputs and outputs of different process classes.

Future work

This work is part of the Combechem project and, as such, is
committed to open source principles. It is planned that the
technologies described here will be lodged with the OMII
repository (http://www.omii.ac.uk/). The making tea design
method and the tablet software from will also be evaluated in

myTea project (http://mytea.ecs.soton.ac.uk/) which will take
the lessons we have learned and apply them within the MyGrid
project framework with bioinformaticians. It is also our
intention to pursue future collaborations with other research
groups in this area such as those working on CML and the
CMCS project.

Acknowledgements
This work is supported by the Combechem project: (Structure-
Property Mapping: Combinatorial Chemistry and the Grid),
grant GR/R67729/01 from the UK Engineering and Physical
Sciences Research Council. We wish to thank the chemists
from the synthesis lab of Dr Martin Grossel for their time in
helping us develop and test the system.

References
 1 J. Frey, D. De Roure, m. c. schraefel, H. Mills, H. Fu, S. Peppe,

G. Hughes, G. Smith, and T. R. Payne, Context Slicing the Chemical
Aether, Proceedings of First International Workshop on Hypermedia
and the Semantic Web, ed. M. David, University of Southampton
EPrints Service Southampton, UK, 2003.

 2 J. G. Frey, D. De Roure and L. Carr, Publication at Source: Scien-
tific Communication from a Publication Web to a Data Grid,
Proceedings of Euroweb 2002, British Computer Society, Swindon,
2002, pp. 88–90.

 3 m. c. schraefel, G. Hughes, H. Mills, G. Smith and J. Frey, Making
Tea: Iterative Design through Analogy, Proceedings of Designing
Interactive Systems, ACM Press, New York NY, 2002, pp. 49–58.

 4 m. c. schraefel, G. Hughes, H. Mills, G. Smith, T. Payne and J. Frey,
Breaking the Book: Translating the Chemistry Lab Book into a
Pervasive Computing Lab Environment, Proceedings of CHI 2004,
ACM Press, New York NY, pp. 25–32.

 5 COSHH Essentials. UK Health and Safety Executive. http://
www.coshh-essentials.org.uk/.

 6 Jena, A Semantic Web Framework for Java. http://
jena.sourceforge.net/.

 7 Resource Description Framework (RDF): Concepts and Abstract
Syntax, ed. G. Klyne and J. J. Carroll, W3C, Geneva, 2004.
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.

 8 RDF Vocabulary Description Language 1.0: RDF Schema, ed.
D. Brickley and R.V Guha, W3C, Geneva, 2004. http://www.w3.org/
TR/2004/REC-rdf-schema-20040210/.

 9 OWL Web Ontology Language Semantics and Abstract Syntax,
W3C Recommendation, ed. P. F. Patel-Schneider, P. Hayes and
I Horrocks, 10 February 2004. http://www.w3.org/TR/2004/REC-
owl-semantics-20040210/.

10 AKT project reference ontology. http://www.aktors.org/publications/
ontology/.

11 R. Heery, M. Duke, M. Day, L. Lyon, S. Coles, J. Frey,
M. Hursthouse, L. Carr, and C. Gutteridge, Integrating research
data into the publication workflow: eBank experience, PV-2004:
Ensuring the Long-Term Preservation and Adding Value to the
Scientific and Technical Data, held 5–7 October 2004, Frascati,
Italy.

12 Protégé Project. http://protege.stanford.edu/.
13 BEA, IBM, Microsoft, SAP AG and Siebel Systems, Business

Process Execution Language for Web Services Version 1.1, May 2003.
http://www-106.ibm.com/developerworks/webservices/library/
ws-bpel/.

14 DAML Services Coalition, OWL-S specification. http://
www.daml.org/services/owl-s/1.0/.

15 SCRIP-SAFE, PatentPad. http://www.scrip-safe.com/laboratory_
notebooks.htm/.

16 L. Arnstein, G. Borriello, S. Consolvo, C. Hung and J. Su, Labscape:
A Smart Environment for the Cell Biology Laboratory, IEEE Pervas.
Comput. Mag., 2002, 1(3), 13–21.

17 K. Bøegh, C. Letondal, W. E. Mackay, G. Pothier and H. E.
Sørensen, The Missing Link: Augmenting Biology Laboratory
Notebooks, Proc. UIST, ACM Press, New York NY, 2002,
pp. 41–50.

18 J. D. Myers, Collaborative Electronic Notebooks as Electronic Re-
cords: Design Issues for the Secure Electronic Laboratory Notebook
(ELN), Proc. CTS’03, Society for Modeling and Simulation (SCS),
http://www.scs.org. Proceedings: http://www.scs.org/scsarchive/
search.cfm?presearch=db&dbrec=29. Paper: http://www.scs.org/
scsarchive/getDoc.cfm?id=2051. Metadata: http://www.scs.org/
scsarchive/docInfo.cfm?get=2051.

19 Amphora Research Ltd., http://www.amphora-research.com/.

3 2 9 2 O r g . B i o m o l . C h e m . , 2 0 0 4 , 2 , 3 2 8 4 – 3 2 9 3 O r g . B i o m o l . C h e m . , 2 0 0 4 , 2 , 3 2 8 4 – 3 2 9 3 3 2 9 3

20 ChemOffice, CambridgeSoft Corporation. http://www.camsoft.com/.
21 NoteBookMaker, NoteBookMaker ltd. http://www.notebook-

maker.com/.
22 Open Biological Ontologies. http://obo.sourceforge.net/.
23 C. J. Stoeckert Jr, H. C. Causton and H. A. Ball, Microarray data-

bases: standards and ontologies, Nat. Genet., 2002, 32, 469–473.
24 C. D. Hafner, N. Fridman Noy, Ontological Foundations for

Biology Knowledge Models, 4th International Conference on
Intelligent Systems for Molecular Biology, AAAI Press, St. Louis
MO, 1996, 78–87.

25 L. Pouchard, L. Cinquini, B. Drach, et al., Exploring Ontologies in
ESG, Symposium on Cluster Computing and the Grid (CCGrid 2003),
IEEE Comp. Soc., Los Alamitos, pp. 626–632.

26 Chemical Markup Language project. http://cml.sourceforge.net/.
27 P. Murray-Rust and H. S. Rzepa, Chemical markup, XML and the

Worldwide Web, Part 4: CML Schema, J. Chem. Inf. Comput. Sci.,
2003, 43(4), 757–772.

28 C. M. Pancerella, J. D. Myers, et al., Metadata in the Collaboratory
for Multi-Scale Chemical Science, Proceedings of the 2003 Dublin
Core Conference: Supporting Communities of Discourse and Practice-
Metadata Research and Applications (DC 2003). Conference
proceedings: http://www.siderean.com/dc2003/search.jsp. Paper:
http://www.siderean.com/dc2003/401_Paper67.pdf.

29 J. D. Myers, A. Chappell, M. Elder, A. Geist and J. Schwidder,
Re-integrating the research record, IEEE Comput. Sci. Eng., 2003,
5(3), 44–50.

